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Abstract 

An analysis is given of the contribution of various crystal 
imperfections to the rocking widths of reflections and 
the divergence of the diffracted beams. The crystal 
imperfections are the angular spread of the mosaic 
blocks in the crystal, the size of the mosaic blocks and 
the variation in cell dimensions between blocks. The 
analysis has implications for improving crystal perfec- 
tion, defining data-collection requirements and for data- 
processing procedures. Measurements on crystals of 
tetragonal lysozyme at room temperature and 100 K 
were made in order to illustrate how parameters 
describing the crystal imperfections can be obtained. 
At 100 K, the dominant imperfection appeared to be a 
variation in unit-cell dimensions in the crystal. 

1. Introduction 

There has been increasing interest over the past few 
years in measuring the degree of perfection of protein 
crystals, normally by determining the rocking widths of 
individual reflections when illuminated with a highly 
parallel monochromatic X-ray beam. Such measure- 
ments can be used to define the requirements for data- 
collection facilities as well as to assist in monitoring 
improvements in crystallization techniques. The rocking 
widths are often directly assigned to the mosaic spread 
in the crystal, commonly understood as the angular 
spread of mosaic blocks in the crystal. 

Previous studies of the perfection of protein crystals 
have concentrated on highly perfect crystals grown on 
earth and in space using diffractometer-based, Laue or 
monochromatic topography techniques or combinations 
of these (Colapietro et al., 1992; Fourme et al., 1995; 
Snell et al., 1995; Stojanoff et al., 1997). This paper 
describes crystals with a much lower degree of perfec- 
tion, corresponding to the protein crystals used in the 
vast majority of protein-structure determination 
projects. Freezing of protein crystals is increasingly 
being used to minimize radiation damage. The rocking 
width normally increases on freezing to values of 0.2 ° or 
more (Mitchell & Garman, 1994), although it is likely 
that lower values can be obtained. Changes in cell 
dimensions often occur on freezing. In some cases (e.g. 
Skrzypzak-Jankun et al., 1996) more than one crystal 
form can exist within the same sample on freezing. 
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With a large angular spread of mosaic blocks, the 
spots should be spread into sharp arcs on the diffraction 
pattern (a powder pattern being the extreme case of 
this). This effect is often absent despite quite high 
apparent values of the mosaic spread. Little attention 
has been given to measuring the angular widths of the 
diffracted beams from protein crystals. Such measure- 
ments can provide extra information about the perfec- 
tion of the crystals and can also be used in defining data- 
collection requirements. In this paper, a theoretical 
analysis is made of the contribution of three types of 
crystal imperfection to the rocking widths and 
diffracted-beam divergence. This analysis should have 
general applicability. In order to illustrate how the 
various parameters could be determined, measurements 
on lysozyme crystals at room temperature and 100 K are 
described. In this case, the increased rocking width at 
100 K is better described by a variation in cell dimen- 
sions throughout the crystal, rather than an increased 
angular spread of mosaic blocks. 

The issue of crystal perfection is not confined to data 
collection using highly collimated synchrotron-radiation 
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Fig. 1. A mosaic-block model  of a crystal showing a spread in the 
orientation w of the mosaic blocks, a spread in the size s of the 
blocks and a variation 3a in the cell dimensions between different 
blocks. 
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sources. Very well coll imated beams can also be 
obta ined from X-ray tubes. The principles of obtaining 
these beams are described by Arnd t  (1990). 

2. Modelling the imperfections 

The purpose of this paper  is to describe the imperfec- 
tions which could occur in common protein crystals. 
Effects owing to extinction can be safely ignored in 
these cases, because the structure factors are general ly 
very low and the extinction depth is much larger than 
the size of the crystal or mosaic block. A discussion of 
the effects of extinct ion can be found in Fourme et al. 
(1995). 

A simple descript ion of an imperfect  crystal is given 
by a mosaic-block model  (Fig. 1). This model  is itself 
also imperfect.  Rea l  crystals will have disordered 
regions. They are l ikely to have complex dislocation 
p h e n o m e n a  which might  require topographic  techniques 
for analysis (Fourme et al., 1995; Stojanoff  et al., 1997). 
However ,  the mosaic-block model  can be used to 
introduce three realistic parameters  describing the 
crystal perfection. These parameters  are the size s of the 
mosaic blocks, the angular  spread co of the blocks and 
the variat ion in cell dimensions 3a (and therefore  reci- 
procal-cell dimensions 6a/a 2) between blocks. These 
parameters  can affect both the angular  rocking width of 
the crystalline reflections and the divergence of the 
diffracted beams. To simplify the descript ion in this 
paper,  it is assumed that  all the blocks are the same size. 
The values of co and 3a/a are assumed to be single 
numbers  which represent  the entire range of angles or 
cell dimensions present  in the specimen. The result  of 
these simplifying assumptions is that  single numbers  are 

derived for the resul tant  effects on the diffraction 
pattern.  However ,  the expressions can be extended to 
cope with any spread of mosaic-block sizes, angles or cell 
dimensions within the specimen including, for example, 
a spread of unit-cell sizes within a mosaic block. 

The effects of these specimen imperfect ions can be 
derived by considering the broadening  of reciprocal- 
lattice points and the consequences when they pass 
through the Ewald sphere (Fig. 2). The expressions 
given cover the case where the reciprocal-latt ice point  
passes normal ly  through the sphere of reflection, which 
is a reasonable  approximat ion away from the rota t ion 
axis in protein-diffract ion experiments,  but  can also be 
ex tended to the more general  case. The various 
approximations used here  are part ly a result of the 
methods  used to characterize the specimen imperfec- 
tions. Proper  evaluat ion of the parameters  requires a 
complete mapping  of the three-dimensional  specimen 
t ransform in reciprocal space. Useful  estimates can be 
obta ined from still images and oscillation images of the 
diffraction pat terns  recorded on an area detector.  

The three parameters  contr ibute to the observed 
rocking width in the following manner .  In the absence of 
other  effects, the observed rocking width can be equated 
to the angular  spread 09 of the mosaic blocks. The effect 
of mosaic-block size is dependen t  on the spacing of the 
Bragg planes d [= M(2sin0)] or its reciprocal d* (= 1/d), 
the expression for the rocking width being d/s. For the 
simple case considered here, the effect of the variat ion 
in cell dimensions is independen t  of d and the contri- 
but ion to the rocking width is 3a/a. 

The divergence of the diffracted beam also depends 
on all three parameters.  The angular spread of the 
mosaic blocks creates spherical caps instead of points in 
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Fig. 2. The effects in reciprocal space of the crystal imperfections shown in Fig. 1. (a) The angular spread 09 of mosaic blocks leads to spherical caps 

in reciprocal space. These are represented by arcs in the two-dimensional representation shown here. When the spherical caps pass through the 
Ewald sphere they are projected onto the detector plane as arcs, in a plane perpendicular to that shown, with an angular spread of 09 when 
measured from the centre of the detector. (b) The limited size s of the mosaic blocks leads to a broadening of the reciprocal-lattice points into a 
distribution which is approximated, for simplicity, by 1/s (if a sine function is assumed, corresponding to diffraction from a slit of width s, the 
distance between the zeros in the transform is actually 2/s). This distribution subtends an angle of d/s at the origin of reciprocal space, therefore 
contributing to the rocking width by the same amount. The distribution subtends an angle of Ms at the origin of the Ewald sphere. This equates 
to the divergence of the diffracted beam. A reciprocal-lattice point is shown on the sphere of reflection in order to illustrate this. (c) The 
variation in unit-cell dimensions 6a leads to an increase in size of the reciprocal-lattice points by an amount n6a/a 2 which increases with 
resolution. This distribution subtends an angle of (n3a/a2)/d * at the origin of reciprocal space. As d* = n/a, this equates to 8a/a giving this 
contribution to the rocking width. A reciprocal-lattice point is shown on the sphere of reflection in order to demonstrate this. The distribution 
subtends an angle of (Md)(Sa/a) to the origin of the Ewald sphere. This equates to the divergence of the diffracted beam. 
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Table 1. Expressions for the effect of crystal imperfections 
on reflection rocking width and diffracted-beam diver- 

gence 

Rocking width Diffracted-beam 
divergence 

Angular spread of o9 arcs of width o9 
blocks o9 

Mosaic-block size s d/s )~/s 
Variation in cell 3a/a ()~/d)(3a/a) 

dimension 6a/a 

reciprocal space. As they pass through the sphere of 
reflection, these caps will project on to a flat detector 
(normal to the beam) to give arcs on the detector of 
angular width co. For an co value of 0.2 ° the arc will be 
approximately 0.3 mm long at a distance of 100 mm 
from the centre of the detector. With commonly used 
beam sizes and detector resolutions this would only just 
be observable. The finite size s of the mosaic blocks will 
lead to broadening of the diffracted beam over an angle 
of )Js. This will cause the same increase in the size of a 
diffraction spot at any resolution. The variation in 
reciprocal-cell dimensions will give a broadening of 
(~./d)(3a/a). The size of the diffraction spots will there- 
fore increase with distance from the centre of the 
detector due to the 1/d component of the expression. 

These effects on rocking width and beam divergence 
are summarized in Table 1 and further information is 
given in the caption to Fig. 2. If all three types of 
imperfection are present, their effects are combined. In 
general, this would require a convolution of the various 
distributions to obtain the overall profile of each spot in 
reciprocal space. 

3. Estimating parameters for three types of imperfection 

From measurements of rocking width and diffracted- 
beam divergence at different plane spacings it should be 
possible to determine values for the three parameters 
with some redundancy. 

For the rocking width, it should be noted that the 
effect of the angular spread of mosaic blocks and the 
effect of a variation in cell dimensions will be similar. 
Both lead to an increase in the size of the average 
reciprocal-lattice point with resolution (Fig. 2). 
However, the arcs on the detector created by an angular 
mosaic spread can be distinguished by inspection from 
the distribution obtained by a variation in cell dimen- 
sions. The latter effect causes the spots to increase in size 
radially as well as azimuthally. 

The measurements on tetragonal crystals of lysozyme 
at 100 K described below demonstrate how these para- 
meters can be estimated for the type of frozen crystal 
commonly used for data collection. A highly perfect 
tetragonal crystal of lysozyme at room temperature was 
used as a standard, although it was not expected that the 
experimental setup would provide information on the 

parameters in this crystal. The preparation of the crys- 
tals and freezing techniques were as described in 
Gonzalez & Nave (1994). The primary aim was to 
illustrate how the various parameters could be obtained 
by observing significant effects for the divergence of the 
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Fig. 3. A measurement of the broadening of the diffracted beam for a 
tetragonal lysozyme crystal at 100 K. The pixel size is 0.15 mm, the 
collimator size is 0.2 mm and the beam divergence is 0.3 mrad. (a) A 
diffraction pattern taken at a crystal-to-detector distance of 
250 mm. (b) and (d) Close-ups of the two marked diffraction spots 
taken at this distance. (c) and (e) Close-ups of the same diffraction 
spots taken at a crystal-to-detector distance of 1000 mm. 
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diffracted beam from a crystal with high mosaicity. 
Cryoprotectants were therefore not added, although 
they are often used to obtain a small mosaic spread for 
the frozen crystal (Mitchell & Garman, 1994). 

Station 7.2 on the SRS at Daresbury with wavelength 
1.488 ~, was used. Slits were used to reduce the hori- 
zontal beam divergence to 0.3 mrad, which is compar- 
able with the vertical beam divergence. A 0.2 mm 
diameter collimator was used. The divergence of the 
incident beam was checked by recording diffraction 
spots on X-ray film placed at a distance of 0.6 m from the 
crystal at room temperature. These diffraction spots 
were under 0.4 mm in size. This is consistent with a 
0.2 mm diameter collimator and a 0.3 mrad divergent 
beam at 0.6 m from the collimator. The divergence of 
the diffracted beam was estimated by recording 
diffraction spots on an image-plate detector (MAR 
Research) placed at distances between 240 and 1000 mm 
from the crystal. Oscillation ranges between 2 and 5 ~' 
were used. For the fully recorded reflections, no signif- 
icant difference in the diffracted-beam divergence was 
observed for the different oscillation ranges. Reflection 
rocking widths were estimated by recording still images 
and using the R O T G E N  package (Campbell, 1996) to 
simulate the observed diffraction pattern. The routines 
in this program are based on those in the M O S F L M  
processing package (Leslie, 1992). These programs 
produce a good simulation of a diffraction pattern from 
a highly perfect stationary crystal, where the number of 
recorded diffraction spots is determined by the incident- 
beam divergence and an isotropic mosaic spread, 
equivalent to co here. The programs do not simulate the 
complex shape of the reciprocal-lattice points from 
some of the frozen crystals and there is no allowance for 
anisotropy in the mosaic spread. The value of the 
rocking width obtained was the mosaic spread for which 
nearly all the observed spots were predicted. Due to the 
anisotropy of the crystal imperfections, some spots were 
predicted which were not observed. However, a 
comparison with parameters obtained from observa- 
tions of the maximum divergence of the diffractcd 
beams was possible. 

4. Results 

Fig. 3(a) shows a diffraction pattern from the frozen 
lysozyme crystal taken at a crystal-to-detector distance 
of 250 mm. Enlargements of two diffraction spots are 
shown in Figs. 3(b) and 3(d). These spots, corresponding 
to d values of between 10 and 13 A, are shown again at a 
detector distance of 1000 mm in Figs. 3(c) and 3(e). As 
shown in Fig. 3, the increase in size is between 3 and 
8 pixels (0.45-1.2 mm). The increase may be different in 
different directions through the spots but is similar for 
all the spots (approximately 15) in this resolution range. 
Taken over the extra distance of 760 mm, this corre- 
sponds to diffracted-beam divergences of between 0.6 

Table 2. Measurements made from diffraction patterns o f  
lysozyme test crystals and parameters describing the 

crystal imperfections derived from them 

The angular spread w appears to be small for both crystals. The 
perfection of the crystal at 290 K is likely to be much better than the 
limiting values shown here. 

29(1 K 1(10 K 
Diffraction-pattern measurements 

Rocking width (mrad) <0.3 15 
Diffracted-beam divergence, 

10-13 ,~, resolution <0.3 0.6-1.5 
Diffracted-beam divergence, 

2.7-3.6 ,~ resolution <0.3 2.0-5.0 
Crystal-imperfection parameters 

aa/a from rocking width <3 x 10 4 0.015 
aa/a from beam divergence, 

10-13 ,~ resolution <6 × 10 4 0.0(15-0.012 
aa/a from beam divergence, 

2.7-3.6 ,~ resolution <6 × 10 -a 0.004-0.013 
Mosaic-block size s (A) >5000 >50(X) 

and 1.5 mrad. Similar values were obtained using the 
spot sizes from room-temperature lysozyme as a refer- 
ence and measuring the increase in spot size for the low- 
temperature crystal at a detector distance of 1000 ram. 
Measurements were also made at d spacings of 2.7-3.6 ,~, 
on the pattern in Fig. 3(a). Several hundred spots were 
present in this resolution range. Divergences found from 
reflections with d spacings 23  A were approximately 
four times greater than those obtained with d spacings 
212 A. The reciprocal-lattice points, therefore, increase 
in size with increasing plane spacing d. Within the error 
range, the results indicate that the reciprocal-lattice 
points have a small intrinsic size near the origin of 
reciprocal space and the contribution due to the finite 
size of the mosaic blocks is, therefore, small. 

The results are summarized in Table 2. At room 
temperature the various measurements were dominated 
by the beam properties, which is not suprising since 
lysozyme crystals can have a high degree of perfection 
(Colapietro et al., 1992; Fourme et al., 1995). A signifi- 
cant increase in rocking width (to 50 times the angular 
spread of the incident beam) occurred for the frozen 
crystal. For the frozen crystal (and for the crystal at 
room temperature) there was no evidence of arcs on the 
detector produced by a significant angular spread of the 
mosaic blocks. The spots increased in extent in all 
directions, though not by the same amounts, and there 
was some evidence of splitting of the spots (Fig. 3). 

The measurements were used to derive the model 
parameters s and Sa/a (Table 2). The room-temperature 
crystal is likely to have a high degree of perfection and 
the parameters obtained from this experimental setup 
are only limiting values. For the crystal at 10()K, the 
divergence of the diffracted beams increases with the d 
spacing (Table 2) in a way which indicates that it is 
dominated by the effect of a variation in the unit-cell 
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dimensions; in the 10--13 A spacing range the beam 
divergence is approximately one quarter of that in the 
2.7-3.6 A spacing range. The values of 6a/a derived for 
these ranges are similar, which is consistent with the 
mosaic-block size making an insignificant contribution 
to the divergence of the diffracted beams. 

The variation in cell dimensions derived from the 
rocking width and beam divergence agree well. 
However, it should be pointed out that a single number 
for the rocking width does not adequately represent the 
real situation in the frozen crystals. 

5. Di scuss ion  

The increase in diffracted-beam divergence indicated 
that the main effect on freezing in this case was to cause 
a variation in cell dimensions throughout the crystal. 
This was also the main cause of the observed increase in 
the rocking width of the reflections. It is common to 
observe a reduction in cell dimensions on freezing, 
though not necessarily a distribution of cell dimensions. 
It is possible that a reduction in cell dimensions is 
partially dependent on the cooling rate which could vary 
throughout the depth of the crystal. In some cases (e.g. 
Skrzypzak-Jankun et al., 1996) two distinct phases can 
coexist in the same crystal, causing problems in data 
processing. 

For a perfect crystal with a single mosaic block the 
value of s will be the same as the crystal dimensions. This 
case has been considered by Helliwell (1992) and Snell 
et al. (1995) who derived a value of a/s from the rocking 
width. The rocking width can only be equated to a/s for 
the first diffraction order; the correct general expression 
is a/ns (i.e. d/s) for the nth order. The difference affects 
the theoretical limit for minimum rocking width for a 
crystal of a particular size. Snell et al. (1995) used a beam 
of 10 × 20 larad divergence and observed similar rocking 
widths for their best space-grown crystal. They stated 
that this was only a factor of two or so larger than the 
theoretical limit. The expression given here suggests that 
the rocking width was in fact much greater than the 
theoretical limit unless the first diffraction order (n = 1) 
was measured. 

The term mosaic spread is often used in data- 
processing packages as a parameter to assist in 
predicting the contribution of a particular reciprocal- 
lattice point to a diffraction image. The term mosaic 
spread implies a particular type of contribution to the 
rocking width of each reflection. The analysis here 
indicates that the rocking width can have a more 
complex form than that defined (e.g. Bolotovsky & 
Coppens, 1997) by a simple angular spread of mosaic 
blocks. A more complete description would lead to 
better results from the data-processing packages, parti- 
cularly for reflections which are partially recorded on 
each image. However, the most complete method is to 

measure three-dimensional profiles of the reflections 
rather than assume any physically based model. 

The observation, in this case, that the variation in 
unit-cell dimensions is the dominant imperfection 
provides an explanation for the observation that radially 
sharp diffraction arcs are not always observed in the 
presence of high apparent mosaic spreads. If this effect 
proved to be common, it could provide information to 
assist in developing procedures for minimizing the 
effects. It is hoped that further measurements of 
diffracted-beam divergence will be made in order to 
further document the effects described here. The 
synchotron radiation beams used here are sufficiently 
parallel to investigate these effects for crystals at cryo- 
temperatures. Cryo-crystallographic techniques are 
increasingly being used for protein-crystallography data 
collection. Much more highly parallel beams would be 
required to estimate the different effects in crystals with 
a high degree of perfection. There might be difficulty in 
fully separating all the effects if white-beam methods 
were used. However, it would be interesting to try white- 
beam reticulography (Lang & Makepeace, 1996) for 
examining protein crystals with a high degree of 
perfection. 

The results provide a model to describe the perfection 
of protein crystals. This can be used to provide a 
description of the breadth of a reflection in position- 
angle-wavelength space for a crystal. The use of this 
formulation to define the requirements for X-ray 
sources, optics and detectors has been described (Nave, 
1998). 

The synchrotron radiation beamtime for this investi- 
gation was funded by EPSRC grant GR/J87763 awarded 
to T. J. Greenhough, Keele University for the develop- 
ment of station 7.2 at the SRS. The co-editor and 
referees are thanked for their helpful suggestions to 
improve the presentation of these results. 
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